277 research outputs found

    Juan Manuel De Rosas

    Get PDF

    Near real-time flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images

    Get PDF
    A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover

    The impact of dams on design floods in the Conterminous US

    Get PDF

    Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling

    Get PDF
    Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides water level observations that can be assimilated into a hydrodynamic model to decrease forecast uncertainty. With an increasing number of operational satellites with SAR capability, information on the relationship between satellite first visit and revisit times and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007,Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a large influence on forecast statistics. Revisit interval is most influential for early observations. The results are promising for the future of remote sensing-based water level observations for real-time flood forecasting in complex scenarios

    Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    Get PDF
    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented

    Risk as a Driver for Innovation

    Get PDF
    The Space Life Sciences directorate (SLSD) and Human Research Program (HRP) at NASA Johnson Space Center has implemented a system for managing human systems risks. These risks are defined as the health and performance risks posed to crew during and after spaceflight. Identification and evaluation of these risks has led to the identification of gaps in knowledge about the risks as well as gaps in technology needed to mitigate them. Traditional routes of closing technology gaps have, in some cases, proven to be too slow when a solution was required quickly. Therefore, certain gaps were used to drive the development of "challenges" for the scientific community. Partnering with open innovation service providers such as InnoCentive and Yet2.com, SLSD and HRP have decreased the amount of time from identification of a need to the evaluation of a solution. Although not all proposed solutions will result in a risk mitigation strategy or tool, the process has allowed faster evaluation of proposed solutions providing the researcher the ability to move to another possible solution if the first does not sufficiently address the problem. Moreover, this process engages the community outside of NASA and broadens the population from which to draw solutions. In the traditional grant funding structure, only those in the specific field will apply for the grant. However, using open innovation, solutions can come from individuals in many different fields. This can expand the general view of a field (way of thinking within a field) and the application of solutions form new fields while providing a pathway for the acquisition of novel solutions or refinements of current mitigations. Identification of the human systems risks has helped drive the development and evaluation of innovative solutions as well as engaging a broader scientific audience in working with NASA
    • …
    corecore